Two-step affinity purification of multiubiquitylated proteins from Saccharomyces cerevisiae.

نویسندگان

  • Thibault Mayor
  • Raymond J Deshaies
چکیده

In budding yeast and higher eukaryotic genomes, there are, respectively, 50 and up to 400 or more distinct genes that encode for ubiquitin-ligases, and approximately 15-90 genes that encode for ubiquitin isopeptidases (TM and RJD, Semple et al., 2003). This puts ubiquitylation on par with phosphorylation as the most common reversible posttranslational modifications in eukaryotic cells. A key challenge that has met with limited success to date is to identify the proteins that are the substrates for this large collection of enzymes. To begin to address this daunting challenge, we sought to identify ubiquitylated proteins that are potential substrates of the 26S proteasome. Here, we describe a two-step affinity purification protocol that uses a budding yeast strain that expresses hexahistidine-tagged ubiquitin. In the first step, native cell lysate was chromatographed on a UBA domain-containing matrix that binds preferentially to K48-linked multiubiquitin chains. Free ubiquitin and presumably monoubiquitylated proteins did not bind this column, whereas proteins that are potential substrates of the proteasome were enriched. In the second step, UBA domain-binding proteins were subjected to immobilized metal ion affinity chromatography (IMAC) under denaturing conditions on magnetic nickel beads, resulting in >3000-fold enrichment of ubiquitin conjugates relative to crude cell extract.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Purification of Saccharomyces cerevisiae eIF4E/eIF4G/Pab1p Complex with Capped mRNA

Protein synthesis is one of the most complex cellular processes, involving numerous translation components that interact in multiple sequential steps. The most complex stage in protein synthesis is the initiation process. The basal set of factors required for translation initiation has been determined, and biochemical, genetic, and structural studies are now beginning to reveal details of their...

متن کامل

One-step affinity purification of the yeast ribosome and its associated proteins and mRNAs.

We describe a one-step affinity method for purifying ribosomes from the budding yeast Saccharomyces cerevisiae. Extracts from yeast strains expressing only C-terminally tagged Rpl25 protein or overexpressing this protein in the presence of endogenous Rpl25p were used as the starling materials. The purification was specific for tagged 60S subunits, and resulted in the copurification of 80S subun...

متن کامل

A Novel Recombinant DNA System for High Efficiency Affinity Purification of Proteins in Saccharomyces cerevisiae

Isolation of endogenous proteins from Saccharomyces cerevisiae has been facilitated by inserting encoding polypeptide affinity tags at the C-termini of chromosomal open reading frames (ORFs) using homologous recombination of DNA fragments. Tagged protein isolation is limited by a number of factors, including high cost of affinity resins for bulk isolation and low concentration of ligands on the...

متن کامل

Generation of an inducible system to express polo-like kinase, Cdc5 as TAP fusion protein during meiosis in Saccharomyces cerevisiae

Tandem affinity purification (TAP) is a highly efficient method for isolation of protein complexes from endogenous biological macromolecules. TAP system consists of dual affinity tags that facilitates the sequential purification of the desired proteins expressed at their low levels in vivo. Polo-like kinases (PLK) are serine/threonine protein kinases that are the crucial regulators of cell cycl...

متن کامل

Systematic characterization of the protein interaction network and protein complexes in Saccharomyces cerevisiae using tandem affinity purification and mass spectrometry.

Defining protein complexes is a vital aspect of cell biology because cellular processes are often carried out by stable protein complexes and their characterization often provides insights into their function. Accurate identification of the interacting proteins in macromolecular complexes is easiest after purification to near homogeneity. To this end, the tandem affinity purification (TAP) syst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Methods in enzymology

دوره 399  شماره 

صفحات  -

تاریخ انتشار 2005